Hva er forklart varians?

I dette innlegget skal vi dykke ned i konseptet R^2, et nøkkelelement i regresjonsanalyse som forteller oss hvor godt modellen vår forklarer dataene. R^2 går under flere navn: det er også kjent som forklaringsgrad, determinasjonskoeffisient eller «forklart varians». R^2 uttales «R kvadrert» eller «R i annen».

R^2, enkelt forklart

illustrasjonsbilde: spredning og signifikans. forklart varians

R^2, altså forklart varians, er en statistisk måling som forteller oss hvor godt dataene passer til en regresjonsmodell. Hvis dataene passer bra, betyr det at modellen har en god evne til å predikere den avhengige variabelen, og R^2 er høy. Hvis dataene passer dårlig, vil det si at modellen har svak evne til å predikere den avhengige variabelen, og R^2 er lav. Hvor godt dataene passer kan vi altså tallfeste med R^2. 

R^2 tar verdier mellom 0 og 1, hvor 0 indikerer at modellen vår ikke forklarer variansen i dataene i det hele tatt, mens 1 indikerer at modellen perfekt forklarer variansen.

Et eksempel – hvor godt kan vi forutsi studenters karakterer?

La oss si at vi har gjennomført en studie for å se om det er en sammenheng mellom antall timer studert og karakterene oppnådd av studentene. Hvis vi beregner en R^2 på 0.6 for denne studien, betyr det at 60% av variansen i karakterene kan forklares av antall timer studert. Dette ville vært veldig bra! Hvis vi derimot beregner en R^2 på 0, betyr det at modellen ikke kan forklare noen av variasjonene i karakterene. Sagt på en annen måte: modellen predikerer ikke studenters karakterer bedre enn bare å gjette gjennomsnittet av karakterer i klassen.

illustrasjonsbilde: fra karakter f til a

En nyttig måte å tenke på R^2 er å se det som et mål på hvor mye bedre regresjonsmodellen vår er til å forutsi den avhengige variabelen enn bare å ta snittet av den avhengige variabelen. Hvis ikke regresjonsmodellen vår predikerer karakterer med større sikkerhet enn bare å gjette gjennomsnittlig karakter i klassen, er den jo ubrukelig! For hver gang vi øker R^2, forbedrer vi modellen vår sammenlignet med bare å gjette gjennomsnittet.

R^2 i enkel og multippel regresjon

R^2 kan brukes både i enkel og multippel regresjon. I enkel regresjon, hvor vi bare har én uavhengig variabel, forteller R^2 oss hvor mye av variansen i den avhengige variabelen som kan forklares av den uavhengige variabelen.

I multippel regresjon, hvor vi har mer enn én uavhengig variabel, forteller R^2 oss hvor mye av variansen i den avhengige variabelen som kan forklares av alle de uavhengige variablene tatt sammen.

Jeg håper denne forklaringen har gitt deg en bedre forståelse av R^2 og dens rolle i regresjonsanalyse.

Ønsker du å lære mer om statistikk og metode, kan du finne utfyllende undervisning i statistikk nedenfor – sjekk det ut!

Finn ditt Statistikk for økonomer-fag tilpasset ditt studiested

Statistikk for økonomer

MET 2920

Statistikk for økonomer

Statistikk for økonomer - NHH

MET2

Statistikk for økonomer – NHH

Statistikk

MET 3431

Statistikk

Statistikk (siviløkonom)

MET 1190

Statistikk (siviløkonom)

Statistikk for økonomer - Høgskolen i Innlandet

ØKA1026, 3MET130, SMET130, HMET130

Statistikk for økonomer – Høgskolen i Innlandet

Statistikk for økonomer - HVL

BØA115

Statistikk for økonomer – HVL

Statistikk for økonomer - Kristiania

SFO1100

Statistikk for økonomer – Kristiania

Statistikk for økonomer - NTNU

SØK1004, REA1154, AR100219, MET1002

Statistikk for økonomer – NTNU

Statistikk for økonomer - USN

MET1010

Statistikk for økonomer – USN

Statistikk - NLA Høgskolen

HSM103

Statistikk – NLA Høgskolen

Statistikk - OsloMet

ØAMET1100

Statistikk – OsloMet